
pNFS

Sam Falkner
Sun Microsystems, Inc.

210/18/07

pNFS

• Extension to NFS to enable parallel data transfer
> A file resides on one or more NFS servers
> Files in a directory may have no physical relationship

> /pnfs/file1 can be on dserv1 and dserv2, /pnfs/file2 can be on dserv3

• Provides for a single, unified name space
> Single name space, mount spans many data servers

• Striped (RAID-0) data layouts are defined
> Simple multipathing supported

310/18/07

NFSv4.1 and pNFS

• IETF Draft standard
> http://www.nfsv4-editor.org/draft-14/draft-ietf-nfsv4-

minorversion1-14.html

• Major pieces of NFSv4.1 include:
> pNFS
> Sessions
> Directory Delegations

• Standardization expected in early '08

410/18/07

pNFS Data Access Methods
Files (NFSv4.1) (*), Objects (OSD), and Blocks (iSCSI)

510/18/07

Security

• Kerberos support on metadata, data and control
paths

pNFS client

pNFS
metadata
service

pNFS
data

server

pNFS
data

server

pNFS
data

servers

pNFS
data

server

pNFS
data

server

pNFS
data

servers

610/18/07

pNFS Architecture

pNFS client

pNFS
metadata
service

pNFS
data

server

pNFS
data

server

pNFS
data

servers

pNFS
data

server

pNFS
data

server

pNFS
data

servers

Local File System
ZFS or QFS

NFS / RPC / XDR

TCP/IP/Ethernet
or

RDMA/Infiniband

710/18/07

NFS-over-RDMA

• NFS data can be transferred via NFS-over-RDMA
protocol using Infiniband transport
> Prototype allows 980MB/sec reads, 650MB/sec writes

> Benchmark done with traditional NFSv4.0 (not pNFS)
> Each parallel thread in pNFS could go approx this fast
> 980 MB/sec is very near physical bridge bandwidth of x2100

> Same systems = 235 MB/sec over TCP/IP/10G Ethernet
> RDMA transfers are much more efficient than TCP/IP

• New NFS-over-RDMA standard code expected in
Solaris Q4CY07

• Complimentary to pNFS parallelism

810/18/07

Current status

• pNFS prototype code running now on Solaris
Nevada
> Interoperability demonstrated at IETF Bakeathon 6/07
> IETF Bakeathon held 10/07

> Tested against other pNFS implementations

• Current implementation available for download:
http://opensolaris.org/os/project/nfsv41/downloads/
> Includes client, metadata server and data server code

and binaries

http://opensolaris.org/os/project/nfsv41/downloads/

910/18/07

Product Plans

• pNFS client based on Solaris Nevada
• Metadata server and data servers based on Solaris

Nevada
• RAID-0 supported
• Integrated with NFS-over-RDMA
• Kerberos support (as always)
• Expected mid-2008

1010/18/07

NFSv4.1 pNFS OpenSolaris Project

• Design and implementation is being done in the
open

• http://opensolaris.org/os/project/nfsv41/
> Code and Binaries
> Documentation
> Email discussion list
> Flash demos

> pNFS Basics – A demo of the OpenSolaris prototype
> More to come...

1110/18/07

How it works...

• A “Layout” manages the location of file data
• A client asks for a “Layout” when it wants to access

the data
• The “Layout” contains a list of deviceids (shorthand

references for the storage devices) and striping
information

• The granting of a “Layout” gives the client the
permission to access the data servers directly.

1210/18/07

How it works... (cont.)
• New operations being introduced

> GETDEVICELIST
> GETDEVICEINFO
> LAYOUTGET
> LAYOUTCOMMIT
> LAYOUTRETURN
> CB_LAYOUTRECALL
> CB_RECALL_ANY
> CB_RECALLABLE_OBJ_AVAIL

• New attributes being introduced:
> fs_layout_type, layout_alignment, layout_blksize,

layout_type, layout_hint, mdsthreshold

1310/18/07

How it works... (cont.)
• Simplified example of how the Solaris prototype

works:
• 1. Mount a file system
• 2. Open a file
• 3. Read from the file

1410/18/07

How it works... (cont.)
• Mount a file system “mount mds:/ /mnt”

GETDEVICELIST

(Client) (Metadata Server)
<layout type>

<list of deviceids
and extended device
information (i.e. IP
Address and Port)>

1510/18/07

How it works... (cont.)
• Open a file “open(/mnt/foo, ...)”

LAYOUTGET

(Client) (Metadata Server)
<layout type>

<iomode>
<offset>
<length>

...

<deviceids and
striping
information>

1610/18/07

How it works... (cont.)
• Read from the file “read(fd, ...)”

READ

(Client) (Data Server 1...n)
READ operations are sent
in parallel to each data
server needed to fill the
request. The client
aggregates the responses
from each data server and
returns the result to the
user.

<offset>
<length>

<eof?>
<data>

1710/18/07

Questions?

Sam Falkner
sam.falkner@sun.com
http://blogs.sun.com/samf

