
FROSUG / FRUUG Presentation November 17, 2005

An Overview of
DTrace
Sam Falkner
Solaris Engineering
Sun Microsystems
FROSUG / FRUUG Joint Meeting
November 17, 2005

FROSUG / FRUUG Presentation November 17, 2005

Agenda
• What is/isn’t DTrace
• The D Language
• Use Cases

> Kernel Developer
> Application Developer
> Programming Language Implementor
> Systems Administrator
> End User

• Other Platforms

FROSUG / FRUUG Presentation November 17, 2005

What is DTrace?
• A Dynamic Tracing facility

> profile, debug, learn

• For Application, Library, and Kernel
> And all three at once!

• No need to recompile, restart, reboot
• Safe -- no fear of crashes or panics

FROSUG / FRUUG Presentation November 17, 2005

DTrace is not...
• Not able to modify outcomes

> DTrace cannot intercept and change the value returned
from a function

> DTrace cannot call arbitrary routines
> DTrace cannot modify memory
> DTrace can however affect timing, sometimes

purposefully

• Not a general programming language
> No function calls, no branching or iteration

• Most limitations are to provide absolute safety

FROSUG / FRUUG Presentation November 17, 2005

The D Programming Language
• Somewhat AWK-like

> Conditions and actions
> Their order is important

• “Knows” about C data types
> Can dereference members of structures

FROSUG / FRUUG Presentation November 17, 2005

An Easy D script
syscall::mount:entry
{
	

 self->traceme = 1;
}

fbt:::return
/self->traceme && arg1 == 28/
{
}

syscall::mount:return
{
	

 self->traceme = 0;
}

When the kernel begins
to handle a mount
system call, trace this
thread

If we’re tracing,
and we return
28, do the
default action

When the mount is
finished, unmark this
thread

FROSUG / FRUUG Presentation November 17, 2005

An Easy D Script
• D Script is one or more clauses
• Each clause is

> Probe
> Predicate (optional)
> Action

fbt:::return
/self->traceme && arg1 == 28/
{
}

FROSUG / FRUUG Presentation November 17, 2005

Probes
• Probe is provider:module:function:name

> fbt:nfs:nfs4_getsecattr:entry

• Provider is a DTrace subsystem specializing in one
particular thing

• Module is “which kernel module or library”
• Function is usually (not always) a function name

> Exception: syscall provider uses system call name

• Name can be anything at provider’s discretion
> Examples: entry, return

FROSUG / FRUUG Presentation November 17, 2005

Predicates
• These are the only conditionals
• They are optional

> If no predicate, the action is always taken

• They are in the same context as the action
> They have access to the same variables, etc.

FROSUG / FRUUG Presentation November 17, 2005

Actions
• Can do many things! :-)

> Store data in globals, locals, etc.
> Print information
> Commit or discard “speculative” data

• Default action is to print certain data about the
probe that is firing

• Remember, order of the clauses is important...

FROSUG / FRUUG Presentation November 17, 2005

Order Dependency
fbt:nfs:nfs4_getsecattr:entry
{
	

 self->traceme = 1;
}

fbt:nfs:nfs4_getsecattr:return
{
	

 self->traceme = 0;
}

fbt:nfs::return
/self->traceme/
{
	

 trace(arg1);
}

Oops! We won’t trace
the return value from
nfs4_getsecattr()

FROSUG / FRUUG Presentation November 17, 2005

Destructive Actions
• Must be enabled explicitly

> -w option to command line
> #pragma D option destructive

• Application level destructive actions
> dtrace_proc or dtrace_user privilege
> stop(), raise(), copyout(), system(), ...

• Kernel level destructive actions
> Only run by superuser
> breakpoint(), panic(), chill()

FROSUG / FRUUG Presentation November 17, 2005

Speculative Data
• Sometimes, you don’t know if data will be

interesting until it’s gone
• Speculation gives us a place to record data, for

now...
• Once we know whether or not we want the data,

we can commit or discard
• Example: If a certain function is returning a failure,

show me everything that happened leading up to
that function

FROSUG / FRUUG Presentation November 17, 2005

Speculative Data Example
syscall::mount:entry
{
	

 self->spec = speculation();
}

fbt:::return
/self->spec/
{
	

 speculate(self->spec);
	

 printf(“returning %d\n”, arg1);
}

/* continued... */

FROSUG / FRUUG Presentation November 17, 2005

Speculative Data Example (cont.)
syscall::mount:return
/self->spec && errno != 0/
{
	

 commit(self->spec);
}
syscall::mount:return
/self->spec && errno == 0/
{
	

 discard(self->spec);
}
syscall::mount:return
/self->spec/
{ self->spec = 0; }

FROSUG / FRUUG Presentation November 17, 2005

Aggregations
• How many times was this function called?
• What is the average time taken for this system

call?
• What is the maximum number of bytes given to the

write() system call
• Give me a quantization bar graph showing the

breakdown of how much memory is being request
via malloc()

FROSUG / FRUUG Presentation November 17, 2005

Quantization Example
pid$target::malloc:entry
{
	

 @[0] = quantize(arg0);
}
 value ------------- Distribution ------------- count
 0 | 0
 1 |@ 33
 2 |@@@@@ 204
 4 |@@@@ 175
 8 |@@@@ 179
 16 |@@@@@@@@@@@@@@@ 606
 32 |@@@@@@@@ 313
 64 |@ 55
 128 | 10

FROSUG / FRUUG Presentation November 17, 2005

Kernel Developer
• No need to reboot to debug
• Seldom need to add debugging code

> And when you do, you can use static DTrace probes
(the “sdt” provider)

FROSUG / FRUUG Presentation November 17, 2005

Application Developer
• pid provider traces user level processes
• Easy to write custom providers for an application

> Create a .d file in your application directory, describing
probes

> Postprocess object files with “dtrace -G ...”
> Documented in the DTrace guide in http://

docs.sun.com/ under “Statically Defined Tracing for
User Applications”

FROSUG / FRUUG Presentation November 17, 2005

Programming Language
Implementor
• Easy to add a provider for your programming

language, just like adding a provider for an
application (see previous slide)

• Trace function calls and returns, garbage
collection, etc.

• Many examples out there: Java, Python, PHP

FROSUG / FRUUG Presentation November 17, 2005

Systems Administrator
• Scripts provided by others (developers, Sun) may

be run with confidence
> Just need to be mindful of “-w” flag or “#pragma D

option destructive”
> Example: DExplorer (http://opensolaris.org/os/

community/dtrace/dexplorer/)
> Example: http://tinyurl.com/afak2

• DTrace requires privelages (dtrace_proc,
dtrace_user, dtrace_kernel) which may be given to
ordinary (non-root) users, e.g. application experts
> /etc/user_attr or the ppriv command

FROSUG / FRUUG Presentation November 17, 2005

End User
• Debug troublesome applications

> save as open.d and run “dtrace -s o.d -q -
c mozilla” to look for failed opens:

syscall::open:entry
/progenyof($target)/
{
 self->n=stringof(arg0);
}
syscall::open:return
/self->n!=0 && errno!=0/
{
 printf("%d %s\n", errno, self->n);
 self->n = 0;
}

FROSUG / FRUUG Presentation November 17, 2005

Other Platforms
• Linux: SystemTap/KProbes

> Still a work in progress
> Sends machine code to the kernel, rather than byte

code
> Can modify memory, call other routines, loop...

• FreeBSD: DTrace port
> Being assisted by Solaris DTrace team
> Might draw more users to OpenSolaris
> Helps people who won’t use OpenSolaris anyway

FROSUG / FRUUG Presentation November 17, 2005

References
• http://docs.sun.com/app/docs/doc/817-6223
• http://opensolaris.org/os/community/dtrace/

FROSUG / FRUUG Presentation November 17, 2005

Questions?

