TCP, Bandwidth Delay Product,
and Web100 Net100 Projects

Peter O Neil
National Center for Atmospheric Research\
April 25, 2002 k

NCAR

1s not filling a bucket, but lighting a fire.

William Butler Yeats

I\

NCAR

What 1s the Internet?

Y The largest network of networks in the world
Y Uses IP protocols and packet switching

¥ Runs on any communications substrate

\

NCAR

Topical List

¥ A Few Technology Trends/Problems
¥ TCP Protocol Overview

¥ Bandwidth Delay Product

Y Impacts on HPNC

¥ Webl00 problem space

¥ Netl00 Problem space

NCAR

Technology Trends

¥ CPU performance increases 60% per year (Moore s Law)
¥ Optical Bandwidth Performance increases 300% per year
Y Software algorithms improve 5-10% per year
Y Large systems double the number of CPUs every 4 years
¥ Memory performance increases 10% per year

\

NCAR

Conclusions from Tech Trends

¥ Memory bandwidth remains the critical bottleneck for many
years to come

— New technology algorithms must evolve to conserve memory
bandwidth

— Applications must be able to adapt to take advantage of these
technologies/algorithms

Y Optical Bandwidth has now surpassed Server I/O Subsystem

capabilities
w§;

NCAR

— [/O Subsystems mst evolve to meet higher demands, new cu
requirements

Problems Posed by High Bandwidth Links

Y Starting to see Internet have very high capacity links

Y Regardless of congestion or queuing scheme used, as
bandwidth delay product (BDP) increases, TCP
becomes more oscillatory and prone to instabilities

¥ As BDP increases, throughput performance degrades

Y Frustration with large BDP, yet to be felt
—1 Gb/s WAN * 100ms RTT = 100Mb/s throughput at best

¥ Static 1500B MTU doesn t help either

NCAR

Path MTU
¥ Maximum Transfer Unit (MTU)

—JLargest framing size of packets

—Various values
¥ Minimum 536 Bytes
¥ Ethernet 1500 Bytes (default)

Y FDDI 4352 Bytes
Y ATM 9180 Bytes
Y HIPPI 65280 Bytes

Y At GigE, 1500 Byte packets order of magnitude too small
¥ At 10GigE, 1500 Byte packets 2-3 orders of magn

iqge too
small k

NCAR

60
40

—e— 1500-byte MTU
—u 4000-byte MTU

9000-byte MTU

CPU Utilization (%)

N
o

100 200 300 400 500 600 700 800 900
Throughput (Mb/s)

Even jumbograms suffer from high CPU utilization

NCAR

pacity Networks > Higﬁ'Speed Networks

B\

NCAR

TCP Protocol Design

Y Intended to operate reliably over almost any
transmission medium

¥ Works at various transmission rates, delays,
corruption, duplication, out-of-order segments

Y Fiber optic transmission rates hitting limits of TCP
¥ How fast can TCP go?

—depends on balancing performance and reliability factors

\

NCAR

Network Information Flow Overview

¥ Senders maintain cwnd and RTT and communicate these
to routers via congestion header in each packet

Y Depending upon the difference between link bandwidth
and 1nput traffic rate, router tells flow on path hnk to
increase or decrease their cwnds

Y Flows converge to fairness based on cwnd and RTT values
¥ Routers along path contmue this until bottleneck found

¥ When info reaches receiver, feedback goes back to sender
via ACK s resulting in sender retuning cwnd R

NCAR

TCP Window Size

Y Perhaps, most important tuning factor

¥ Sender can only send more data after an
acknowledgement received

Y In theory, ideal window size keeps the pipe full — the
Bandwidth Delay Product

\

NCAR

TCP Performance

¥ Dependent not upon bandwidth transfer rate itself
——product of transfer rate and round-trip time (RTT)

¥ Bandwidth*delay product

—measures amount of data that will fill the pipe

—buffer space at sender and receiver to gain maximum
throughput on the TCP connection over the path

—amount of unacknowledged data TCP must handle to keep
pipe full

—Problems arise when bandwidth*delay product 1s largi

NCAR

Recovery from Losses

Fast Retransmit and Fast Recovery algorithms help recovery of
one packet loss per window without draining the pipeline

More than one packet loss per window results 1n a
retransmission timeout forcing pipeline drain and slow start
algorithm to begin again

Expanding window size to match pipe capacity increases
probability of packet drops

If congestion control uses random drops at routers, randomly
dropped packets increases probability of dropping more than
one packet per window

SACK gives sender view of which segments queued at \iver
and which 1n flight

NCAR

Round Trip Measurement

¥ TCP provides reliable data delivery by retransmitting
segments that are not ack d within some RTO interval

¥ Determined by estimating mean and variance of RTT

—T1me between the sending and receiving of ack

\

NCAR

TCP Reliability

Y High transfer rate alone can threaten reliability by
violating TCP design assumptions for duplicate packet
detection and sequence number use

¥ TCP rehability depends upon existence of a bound on
the lifetime of a segment (maximum segment lifetime)

enforced by TTL field at IP layer

N\

NCAR

Bandwidth Delay Product

¥ Bandwidth * Delay = number of bytes in flight to fill
the path

¥ TCP needs rwin § BW*Delay product to achieve
maximum throughput

Y TCP often needs sender size buffers of 2*BW*Delay to
recover from errors

Y You need to send about 3*BW*Delay bytes for TCP to
achieve maximum speed (without loss or congestion)

NCAR

TCP Throughput Issues

Y Bytes/sec T available bandwidth along path

Y Bytes/sec T rwin size / RTT

—8kB window, 87 msec RTT = 750kb/s

—64kB window, 14 msec RTT = 37Mb/s
Doubling MTU, doubles your throughput
Halving RTT latency, doubles throughput
Decreasing packet loss rate, improves throughput

T e R @

Look for sources of loss and path slowdown h
NCAR

Things to Keep 1n Mind About TCP

¥ TCP 1s an adaptive protocol
¥ Tries to keep going faster until 1t hits bump 1n path

Y Always slows down (dramatically) when a loss 1n the flow
stream 1s detected (AIMD)

¥ How much TCP sends at any one time 1s a function of the
size of send and receive buffers

Y Sends, controlled by timing of received ACK s

—Ack packets must also compete for bandwidth, timing delayed,
and they may be dropped from router queues \

NCAR

TCP Congestion Window (cwnd)

¥ cwnd controls the startup and hmits the throughput 1n
the face of packet loss

cwnd gets larger after every new ACK

cwnd gets smaller when loss 1s detected

Usable window = min (rwin, cwnd)

cwnd 1ncreased by one for every new ACK

cwnd doubles every round trip time

cwnd resets to zero after a loss and slow startkain

T o R o o 1

NCAR

TCP Algorithms

¥ Various TCP algorithms incorporate different
congestion control mechanisms and implementations
may or may not use features such as SACK or
window scaling.

\

NCAR

TCP Reno

¥ Reno RFC defined four central mechanisms
—Slow Start
—Congestion Avoidance
—Fast Retransmit
—Fast Recovery

Y Uses Additive Increase Multiplicative Decrease
(AIMD) for congestion control

—QOverly aggressive; probes network by inducing packet loss
—Will use up any available buffer space

¥ Most widely deployed stack but AIMD induceS\
chaotic, oscillatory behavior in the network

NCAR

TCP Vegas

Y Extends TCP Reno by trying to avoid rather than
reaching and reacting to congestion

¥ When cwnd increases 1n size, the expected sending
rate (ESR) increases

Y If actual sending rate stays roughly same, then not
enough bandwidth to send at ESR

—Increasing cwnd will only fill buffer space in network

Y Vegas detects this and avoids congestion by adjusting
cwnd and ESR to available bandwidth h

NCAR

Vegas Incremental Deployment Ok

¥ Number of comparative studies done at ISI, LBL, and
LANL using Network Simulator (NS) with Reno and
Vegas

—http://www.1s1.edu/nsnam/ns/

—http://public.lanl.gov/radiant/website/pubs.html

—http://www.csm.ornl.gov/~dunigan/net1 00/netlinks.html

Y Vegas may provide better throughput performance
due to lower loss rates as compared to Reno

NCAR

Delayed ACKs

¥ TCP receivers send ACKs

—After every second MSS received
—After a delayed ACK timeout

—On every segment after a loss (missing segment)
¥ New segment sets the ACK timer (0-200msec)

Y Second segment (or timeout) triggers an ACK and
zeros the delayed ACK timer

NCAR

Detecting Loss

Y Packets are discarded when queues become full or
nearly full depending on congestion control algorithm
used

¥ Duplicate ACKs get sent after missing or out of order
packets received

Y Most TCP s retransmit after third duplicate ACK

N\

NCAR

Selective Acknowledgement (SACK)

Y Specifies to sender exactly which Bytes were missing
Y Better measures the right edge of cwnd

Y Very good at keeping queues full (more efficient use
of available bandwidth)

¥ However, will increase latencies
¥ Most OS s come with SACK including Linux and

windoze
N\

NCAR

Throughput = f(initial ssthresh)

—®— Max. Tcp window
size = 8000 kByte

Throughput in Mbit/s

Bandwidth
Delay
Product

0 1000 2000 3000 4000

Initial Slow start threshold (ssthresh) in kByte

R\
NCAR

Cwnd too large for Available Bandwidth

tstanding Dotz I:'thE%::::!EIi!3-3'!3|:|E+|::n3r"r|+|::h:3. ==»_plato,cacr,caltech,edusb02] (outstanding datal

1) A packet lost i 2) Fast Recovery |||
‘| (Temporary state to repair the lost) l |
Al 1l .

New \ |

loss |

3) Back to slow start | ‘

(Fast Recovery couldn t repair the lost|

The packet lost is detected by timeout > go back to sl
art cwnd =2 MSS) | T

15353:00 15353405 1h:53:10 15:53¢15

time

Web100

NSF Project — NCSA, PSC, NCR

www.web100.org

\

NCAR

Motivations: What s the Problem?

¥ High performance flows slower than line rate

—Delays continue/increase even with higher bandwidth
¥ TCP tuning 1ssues are non-trivial
Y Poorly conceived stacks
Y Router/switch buffer queues madequate
Y Slow start and AIMD algorithm
¥ Eliminate/dramatically reduce the wizard gap
Y Need for kernel instrumentation set for TCP Vaﬁles

NCAR

The Wizard Gap

TCP over a long haul path
Year Wizards Non-wizards Ratio
Y IMb/s 300kb/s 3:1
Y 10Mb/s
1995 100Mb/s
¥ 1Gb/s 3Mb/s 300:1

Scientists/researchers not happy with thia
NCAR

The Wizard Gap

(ratio has gone from 3:1 to 300:1 in last decade)

—* yizard
— = non-wizard

I I I I I I
1988 1990 1992 1994 1996 1998

year

TCP tuning 1s painful debugging

Y All problems limit performance
— [P routing, long round trip times
— Improper MSS negotiations or path MTU discovery
— [P Packet reordering
— Packet losses, congestion, lame hardware
— TCP sender or receive buffer space

— Inefficient applications

¥ Any one problem can mask all the others and confound all but
the best (and few) tuning gurus

¥ Need for better diagnostics and visibility 1nto problems\

D

NCAR

Goal and Method

Y Make it easy (transparent) for non-experts to
achieve higher throughput performance

Y Enhance TCP capabilities with better (finer grain)
kernel instrumentation and automatic controls

Y Real time triage capability determines sender,
receilver, and/or network bottlenecks

NCAR

Why Focus on TCP

¥ TCP has an 1deal vantage point into throughput
problem space

[CP can 1dentify bottleneck subsystem(s)
[CP already measures the network (some)
[CP can measure the application

Y]
Y]
il |
i |

[CP can adjust itself (auto-tuning feedback)

N\

NCAR

Status

¥ Over a year of ~ 30 alpha testers from SLAC, ORNL,
LBNL, and universities

—www.netl100.org
Y Modified Linux kernel supports 2.4.16
Y Separation between KIS and library functions
Y draft-ietf-tsvwg-tcp-mib-extension-00.txt
Y draft-ietf-ipngwg-rfc2012-update-01.txt

\

NCAR

Looking Ahead

¥ New pathprobe diagnostic tool (wip, unreleased)

¥ Add another 10-12 instruments

¥ Include i1deas from Wu Feng s Dynamic Right Sizing
Y Review instruments and code with other wizards

Y Gain vendor support for ideas and code
Y Finalize IETF draft by fall meeting

\

NCAR

Summary

Y Freely available software distribution

—www.web100.org/download

—hundreds of downloads
¥ Please be cognizant of impacts on others
Y Please use, test, provide feedback, contribute code
Y IETF standards process to benefit all

Y Attention turning to working with OS vendors to
incorporate standards enhancements into theiri ks

NCAR

NET100

Development of network-aware operating
systems

DOE Funded Project — PSC, ORNL, LB., NCAR

www.netl100.org

\

NCAR

Net100 project

¥ DOE-funded (Office of Science) project ($1M/yr, 3 yrs)

¥ Principal investigators
— Wendy Huntoon and the PSC/Web100 team (Janet Brown, Matt Mathis)
— Brian Tierney, LBNL
— Tom Dunigan, ORNL
— collaborators: Marla Meehl, Peter O Neil, Bill Wing, Nageswara Rao

Y Objective: develop network aware operating systems
— optimize and understand end-to-end network and application performance

— eliminate the w izard gap
— Web100 to Web1000?

¥ Motivation

— DOE has a large investment in high speed networks (ESnet) and
distributed applications

\

NCAR

Net100 approach

¥ Deploy/enhance Web100 into DOE network applications
—auto-tune network applications to optimize performance

—collect performance statistics to understand/tune networks and
applications

—evaluate network applications over DOE s ESnet (OC12, OC487?)
¥ bulk transfers over high bandwidth/delay network
¥ distributed applications (grid)

¥ Develop Network Tools Analysis Framework (NTAF)

— configure/launch network tools (pathrate, pipechar,)
—aggregate and transform output from tools and Web100

Y Develop Network Analysis Information Base (NAIB)
—repository for NTAF data

— API to collect and query

NCAR

Bulk transtfers

¥ ORNL/NERSC Probe project
—wide-area distributed storage testbed (HPSS)
—investigate protocols, software, devices

¥ climate model data transfers were slow
— OC3 with 60 ms RTT

—classic TCP tuning problem

— also broken TCP stacks
— developed (almost) TCP-over-UDP test harness

¥ instrumented and tunable
¥ Recent upgrade to OC12, 100 ms RTT h
NCAR

thruput { bytes/sec)

Packet

TCP losses

sunbird.ccs.ornlgov: 1123 _—>_swift.nersc.gov:56 L17 (throughput)

| osses duri hgnstaartapovdry 0.5

-~
-
i

Packet | oss | NSt ant aneous

ra
-
p
rd
Iy
/.f i
/f i z/ _'_,,,.,-F"-f-
./f' ! ’ o
L. e e
i ~ o
' " average
T
. P
T
-
.a-"-..-.d-
-
K." P __F___..-*
i
Ear |y ‘packet 7
o~
o~
0,000 5 W0.000 = 40000 =

Early Impact of Net100

¥ Avoid losses
—retain/probe for optimal buffer

1Z -
S1Z7€CS Barduidth (Hbe) Linear recovery after TCP packet loss

—autotuning (Web100/Net100) *
— ECN capable routers/hosts

default ——
default w/ delayed ACK

% | increment. by B —e—]
increment. by & w/ delayed ACK —s—
—reduce bursts

Y Faster recovery
—shorter RTT (fix routes)
—bigger MSS (jumbo frames)
— speculative recovery
—modified congestion avoidance’

¥ SCTP, out-of-order delivery

0 5 10 15 20]

seconds

" NCAR

Bulk transfer speedups

Y Parallel streams (psockets)

Effect of window & streams on thruput from SLAC to AHL,

—how to choose number of streams 1027200
buffer sizes? T erse
—Web100 autotune ? EEEEEE ;
¥ Application routing daemons e 2
—indirect TCP o

1 2 3 45 6 7 8 91011121520
Thruput in

—_multipath (Rao, ORNL) ber o prsel streams b

oo-5 m3-10 01015 01520 WZ0-25 O25-30 ‘

B30-32 03540 w4043 m45-30 0O50-33 O53-60

Y Are these fair? n

NCAR

Network Tool Analysis Framework
(NTAF)

¥ Configure and launch network tools
— measure bandwidth/latency (iperf, pchar, pipechar)
—collect passive data (SNMP from routers, OS counters)
—forecast bandwidth/latency for grid resource scheduling

—augment tools to report Web100 data
¥ C(Collect and transform tool results into a common format

Y Save results for short-term auto-tuning and archive (NAIB) for
later analysis
— compare predicted to actual performance

—measure effectiveness of tools and auto-tuning l
¥ Use NetLogger to format and send data to NAIB
NCAR

NetLogger

Y End-to-end performance monitoring tool

Y Modify application to log interesting events

Y Support for distributed applications (NTP timestamps)
Y Identify apphcation/network bottlenecks

Y Components
—IETF draft standard message format
—API for event logging
—tools for collecting/sorting log files

—visualization tool for monitoring/playback h

NCAR

NetLogger

“tinc. nettop fetrans lng™ “foc.gerv_flushlog”
“ede net fop.reétrans log™ ——
“nawestnet tep retranslog” —a— “usprest.sery_flush log™ o+

“twlogede™ _,
“tvlog uswest”
“tvlog tioe™ —s—

i
“edesery flush log™ .

TCP retrans

app receive

start write | /| 3

end read

start read |

server in

master out |

masiter in |

app send

2,000

3,000
time (ms)

4,000 5,000

NCAR

Network Analysis Information Base
(NAIB)

Y Extensible infrastructure for performance data

¥ Collect data from active and passive Net100 probes
via NetLogger

Y Gather and serve data via programmatic and graphical
interfaces

N\

NCAR

Network Tool Analysis Framework

- NTAF
Service
NCAR test host
LBNL test host PSC test host
N NTAF
— Service
Network —

NERSC test host

ORNL test host

Configured to perform tests from each
host to all other hosts
ping, traceroute, iperf, pipechar, etc. DB

can query any NTAF service for recent Monitoring n

results FROM that server Event Archive
NCAR

LIl

all results sent to archive

NTAF Use Case

¥ The NTAF 1s configured to run the following network tests
every few hours over a period of several days:

— ping -- measure network delay
— pipechar -- actively measure speed of the bottleneck link

— 1perf -- actively measure TCP throughput. Multiple iperf tests could be run with
different parameters for the number of parallel streams {e.g.: 1,2,4} and the
method of tuning the TCP buffers {Web100 auto-tuned, hand-tuned}

Y All tools will use the Web100 TCP-KIS interface to collect
TCP information from the Web100 kernel, and then use
NetLogger to format and send this data to the database\

NCAR

Use Case (cont.)

¥ Analysis based on this test configuration includes:

— The ability to compare Web100 tuned throughput to hand-tuned throughput.

— The ability to compare predicted bandwidth with application and iperf
bandwidth.

— The ability to determine the advantage, if any, of parallel data streams, using
both hand-tuned and autotuned (Web100-tuned) TCP.

— The ability to see the variability of the results over time.
— The ability to compare pipechar and pathrate to see which is most accurate.

— The ability to measure the impact of tuned TCP streams on non-tuned streams.

\

NCAR

GridFTP

* Working with the Globus project to add NetLogger

instrumentation to GlobusIO and GridFTP,

— provides detailed analysis of how modifying TCP parameters effects GridFTP application
performance.

— Will begin testing the use of the WAD to improve GridFTP performance.

¥ GndFTP (areal application)
— Deployment
— Full install or NTAF install?

¥ will require work for sysadmins

¥ PROBE?

NCAR

Server

Net100: applied

— Linux 2.4 kernel mods
— 100+ TCP variables per flow

¥ Netl00 kernel
— Add Web100 to iperf/ttcp

— Monitoring/tuning daemon

a o TCP-HeblBd bandwidth test v3.0 A
¥ Java applet bandwidth/client tester — [ghisk STr o besin
pp running 18s outbound test... 122 Kbs outbound
running 18s inbound test... 1489 Kbs inbound = WERLOO Mariables | 2]
— fake VV VV VV SCrver pI'OVldGS html web1B88 Connection Variables: HEEB188 Kernesl Mariables: Al
TimestampsEnabled: A
Found Trip times were sampled 615 times SACKEnabled: @
and applet for a total time of 182798 millisecs HinScalekowd: @
giving an average BRTT of: 167.8 mil lisecs (A, 1€ CurrentMS5: 1424
You peceived 1248 packets MaxRwinSent: E2E55
—_— applet Connects tO bwserve]" of size 1424 from the remote host MaxRwinRewd: 21240
and it took a total of 18353.8 millisecs CurrentRuwinkowd: 31328
5 Maximum Expected Bandwidth: 1525 Kbs MinSsthresh: 2147453647
¥ 3 sockets (control, bwin, bwout) Good Data Strean——Ho retransnits! HaxSsthresh: @
You are advertizing a window of 31848 butes CurrentSsthresh: @
. The remote host is aduertizing a window of E2E56 b MaxCwnd: 872682
¥ Server reports WeblOO Varlables to Buffer sizes are wery important in determining the CurrentCund: BTSEES
. . aduertised window sizes. Larger window sizes car | SACK=sRcuwd: B
help increase thropot., If voor window is smaller Eecoveries: B
applet (WlndOW SlZGS’ lossesﬂ RTT) than the remots host, wour should inwvestigate IupAck=In: B
increasing wour socket buffer sizes. FktsRetrans: A
Tr it ButeszRetrans: 8
y web188 reports Tweakable Settings as: Fi
. c . -l 1=
http://firebird.ccs.ornl.gov:7123 ~ I
DISMISS
I START I S EEZ-Z‘:’:’-‘:E&.:-:”,I =
[ﬂUnmgned Java applet Window
|

NCAR

Y Path characterization (NTAF)

— both active and passive measurement
— data base of measurement data

Y Application tuning (tuning daemon,
WAD) NTAF server

— Work around network problems

— daemon tunes application at start up
¥ static tuning information

¥ query data base and calculate optimum TCP
parameters

— dynamically tune application (Web100 feedbac
¥ recalculate parameters during flow
¥ split optimum among parallel flows

Y Transport protocol optimizations
— what to tune?
—1s it fair? stable?

-schedute probes —

-coltect data

Net100: tuning
¥ Work-around Daemon (WAD) Version 0

—tune unknowing sender/receiver at startup
—config file with static tuning data

¥ {src, srcport, dst, dstport, window }
netperf TCP bandwidth with Metlod WAT

— LBL has python version s

70

hand-tuned 1HE ——

¥ expression-based tuning Bl-tureg 11

¥ To be done S

— applying m easurement info

] T S S . AT o S S S SR SN

, . wbo
—tune more than window size? - s . . . | | | _

—communicating WADs) T

- dynamic tun ing sl roi

seconds

NUVANR

Example WAD Usage

¥ Manipulate Web100 variables based on info from
other Web100 mstrument variables

Y Ability to generate and log derived events:

deri ved event: BW-(Dat aBytesQut*8)/(SndLi ml neRwm n+
SndLi ml meOwmnd+SndLi mli meSender)

—uses NetLogger to send events to archive or for real-
time analysis

Y Ability to tune parallel streams (make them fairer?)

—buffer size per stream = optimal buffer size for 1
stream / number of parallel streams

¥ WAD-to-WAD control channel ’\
—Receiver WAD sends tuning data to transmitter
NCAR

TCP Issues

YTCP robust over 20 years

—reliable/stable/fair gt i)

sunbird.ces.ornl.gov:1123_==>_swift.nersc.gov:56 L17 (throughput)
—need window = bandwidth*delay
¥ ORNL/NERSC (80 ms, OC12) need 6 MB

¥Changing: bandwidths L meel §eeevesyiLil sl)
—96Kbs 1.5 Mbs.45 10 01000 2 a
oS o | nst ant aneous bandwi dt h
YUnchanging: y
—speed of light (RTT) /|
—MTU (S’[ﬂl 1500 bytes) mm EAr LY start up-’/
| osses /

—T'CP congestion avoidance
YTCP 1s lossy by design !

—2x overshoot at startup, sawtooth

—recovery after a loss can be very slow l
on today s high delay/bandwidth links T

—Recovery proportional to MSS/RTT? BT s oo e

\ . S / -.-/__.-
LAverage bandwi dth™

''''''''''''

Net100

—use optimal buffer sizes determined from

YAvoid losses

network measurements
—ECN capable routers/hosts
—TCP Vegas
—reduce bursts

T Faster recovery
—bigger MSS (jumbo frames)
—speculative recovery (D-SACK)

—modified congestion avoidance (AIMD)

—TCP Westwood (sender-side mods of the
window congestion control scheme)

Y Autotune (WAD variables)
—Bulffer sizes
—Dupthresh (reordering resilience)
—Del ACK, Nagle
—aggressive AIMD
—Virtual MSS
—initial window, ssthresh
—apply only to designated flows/paths

Linear recovery with aggreszive AIMD parameters (0.9, 1M

230 T T T T T T T T T T
200
@
£ 190 [
=
=
=
=
T 100 -
]
om
0 e 1""'?""'?"""g'""'?deFaﬁlt——ihstanfanenué by ——]
E: : . : default—-avrg by ——
L AIMD 9/ lo—instantaneous —8—
: AIND 8/10-—aurg by ——
0 1 1 1 1 1 1 1 1
0 1 Z 3 4 g 6 7 g 9 10 11
e o
Linear recovery with a wirtual M3:
W T T T T T T Ipmand
T S e S A
T R &/ SLLIK RIS ST PP
E : r-"‘ﬂ T E [hi Ii
a0 ['f‘fafaﬁiﬁmiij‘-'i’-.r- --------------------------------
i n 1 | 3 4] 1 " 0 :
5 , e i =
BT N T R R R P . T T A AT S
o + i
= ' L
40 [l fr et A A
. : : : é default——instantaneous by —e—
U R AR R b default-—avrg by —— 7]
,f MES¥10—inztantaneous —8—
P MSS*iO——aurg by —+—
0 po 1 1 1 1 1 1 1 1

0 1 2 3 4] 5] 7 g 9 10 11
zeconds

(tests with TCP-over-UDP, atou, NERSCHOWRNL)

NCAR

Netl100 status

¥ Completed
—naetwork probes at ORNL, PSC, NCAR, LBL, NERSC
—preliminary schema for network data
—initial Web100 sensor daemon and tuning daemons
—ntegration of DRS and Web100 (proof of principle)

Y In progress
—T'CP tuning extensions to Linux/Web100 kernel
—analysis of TCP tuning options
—deriving tuning info from network measurements
—tuning parallel flows and gridFTP

¥ Future

—mteractions with other network measurement sources
—multipath/parallel path selection/tuning

NCAR

Net100 and ESnet

Y GigE jumboframe experiments

¥ ECN experiments

—Supported by Linux
—Instrumented by Web100

Y drop-tail vs RED experiments
¥ SNMP path data

—where are losses occurring?

—what kind of losses?
—SNMP mirrors (MRTQG)

NCAR

Web100/Netl100 outreach

Y Web pages describing current results
¥ Downloadable Web100/Net100 software

¥ NAIB data available

Y Tutorals, talks, and papers
—SC2002 paper prep
Y Interact with DOE grid projects and Data Grid

projects
N\

NCAR

For more Information

¥ http://webl100.org/
¥ http://www.net100.org/

¥ http://www-didc.lbl.gov/net100/

¥ http://www.csm.ornl.gov/~dunigan/net100
¥ http://www.csm.ornl.gov/~dunigan/net100/netlinks.html

\

NCAR

