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Education is not filling a bucket, but lighting a fire.

William Butler Yeats



What is the Internet?

¥ The largest network of networks in the world

¥ Uses IP protocols and packet switching

¥ Runs on any communications substrate



Topical List

¥ A Few Technology Trends/Problems

¥ TCP Protocol Overview

¥ Bandwidth Delay Product

¥ Impacts on HPNC

¥ Web100 problem space

¥ Net100 Problem space



Technology Trends

¥ CPU performance increases 60% per year (Moore s Law)

¥ Optical Bandwidth Performance increases 300% per year

¥ Software algorithms improve 5-10% per year

¥ Large systems double the number of CPUs every 4 years

¥ Memory performance increases 10% per year



Conclusions from Tech Trends

¥ Memory bandwidth remains the critical bottleneck for many
years to come
— New technology / algorithms must evolve to conserve memory

bandwidth
— Applications must be able to adapt to take advantage of these

technologies/algorithms

¥ Optical Bandwidth has now surpassed Server I/O Subsystem
capabilities
— I/O Subsystems must evolve to meet higher demands, new customer

requirements



Problems Posed by High Bandwidth Links

¥ Starting to see Internet have very high capacity links

¥ Regardless of congestion or queuing scheme used, as
bandwidth delay product (BDP) increases, TCP
becomes more oscillatory and prone to instabilities

¥ As BDP increases, throughput performance degrades

¥ Frustration with large BDP, yet to be felt
—1 Gb/s WAN * 100ms RTT = 100Mb/s throughput at best

¥ Static 1500B MTU doesn t help either



Path MTU
¥ Maximum Transfer Unit (MTU)

—Largest framing size of packets

—Various values
¥ Minimum 536 Bytes

¥ Ethernet         1500 Bytes (default)

¥ FDDI             4352 Bytes

¥ ATM              9180 Bytes

¥ HIPPI           65280 Bytes

¥ At GigE, 1500 Byte packets order of magnitude too small

¥ At 10GigE, 1500 Byte packets 2-3 orders of magnitude too
small
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High Capacity Networks ›  High Speed Networks



TCP Protocol Design

¥ Intended to operate reliably over almost any
transmission medium

¥ Works at various transmission rates, delays,
corruption, duplication, out-of-order segments

¥ Fiber optic transmission rates hitting limits of TCP

¥ How fast can TCP go?
—depends on balancing performance and reliability factors



Network Information Flow Overview

¥ Senders maintain cwnd and RTT and communicate these
to routers via congestion header in each packet

¥ Depending upon the difference between link bandwidth
and input traffic rate, router tells flow on path link to
increase or decrease their cwnds

¥ Flows converge to fairness based on cwnd and RTT values

¥ Routers along path continue this until bottleneck found

¥ When info reaches receiver, feedback goes back to sender
via ACK s resulting in sender retuning cwnd



TCP Window Size

¥ Perhaps, most important tuning factor

¥ Sender can only send more data after an
acknowledgement received

¥ In theory, ideal window size keeps the pipe full — the
Bandwidth Delay Product



TCP Performance

¥ Dependent not upon bandwidth transfer rate itself
—product of transfer rate and round-trip time (RTT)

¥ Bandwidth*delay product
—measures amount of data that will fill the pipe

—buffer space at sender and receiver to gain maximum
throughput on the TCP connection over the path

—amount of unacknowledged data TCP must handle to keep
pipe full

—Problems arise when bandwidth*delay product is large



Recovery from Losses

¥ Fast Retransmit and Fast Recovery algorithms help recovery of
one packet loss per window without draining the pipeline

¥ More than one packet loss per window results in a
retransmission timeout forcing pipeline drain and slow start
algorithm to begin again

¥ Expanding window size to match pipe capacity increases
probability of packet drops

¥ If congestion control uses random drops at routers, randomly
dropped packets increases probability of dropping more than
one packet per window

¥ SACK gives sender view of which segments queued at receiver
and which in flight



Round Trip Measurement

¥ TCP provides reliable data delivery by retransmitting
segments that are not ack d within some RTO interval

¥ Determined by estimating mean and variance of RTT
—Time between the sending and receiving of ack



TCP Reliability

¥ High transfer rate alone can threaten reliability by
violating TCP design assumptions for duplicate packet
detection and sequence number use

¥ TCP reliability depends upon existence of a bound on
the lifetime of a segment (maximum segment lifetime)
enforced by TTL field at IP layer



Bandwidth Delay Product

¥ Bandwidth * Delay = number of bytes in flight to fill
the path

¥ TCP needs rwin ‡ BW*Delay product to achieve
maximum throughput

¥ TCP often needs sender size buffers of 2*BW*Delay to
recover from errors

¥ You need to send about 3*BW*Delay bytes for TCP to
achieve maximum speed (without loss or congestion)



TCP Throughput Issues

¥ Bytes/sec † available bandwidth along path

¥ Bytes/sec † rwin size / RTT

—8kB window, 87 msec RTT = 750kb/s

—64kB window, 14 msec RTT = 37Mb/s

¥ Doubling MTU, doubles your throughput

¥ Halving RTT latency, doubles throughput

¥ Decreasing packet loss rate, improves throughput

¥ Look for sources of loss and path slowdown



Things to Keep in Mind About TCP

¥ TCP is an adaptive protocol
¥ Tries to keep going faster until it hits bump in path
¥ Always slows down (dramatically) when a loss in the flow

stream is detected (AIMD)
¥ How much TCP sends at any one time is a function of the

size of send and receive buffers
¥ Sends, controlled by timing of received ACK s

—Ack packets must also compete for bandwidth, timing delayed,
and they may be dropped from router queues



TCP Congestion Window (cwnd)

¥ cwnd controls the startup and limits the throughput in
the face of packet loss

¥ cwnd gets larger after every new ACK

¥ cwnd gets smaller when loss is detected

¥ Usable window = min (rwin, cwnd)

¥ cwnd increased by one for every new ACK

¥ cwnd doubles every round trip time

¥ cwnd resets to zero after a loss and slow starts again



TCP Algorithms

¥ Various TCP algorithms incorporate different
congestion control mechanisms and implementations
may or may not use features such as SACK or
window scaling.



TCP Reno

¥ Reno RFC defined four central mechanisms
—Slow Start
—Congestion Avoidance
—Fast Retransmit
—Fast Recovery

¥ Uses Additive Increase Multiplicative Decrease
(AIMD) for congestion control
—Overly aggressive; probes network by inducing packet loss
—Will use up any available buffer space

¥ Most widely deployed stack but AIMD induces
chaotic, oscillatory behavior in the network



TCP Vegas

¥ Extends TCP Reno by trying to avoid rather than
reaching and reacting to congestion

¥ When cwnd increases in size, the expected sending
rate (ESR) increases

¥ If actual sending rate stays roughly same, then not
enough bandwidth to send at ESR
—Increasing cwnd will only fill buffer space in network

¥ Vegas detects this and avoids congestion by adjusting
cwnd and ESR to available bandwidth



Vegas Incremental Deployment Ok

¥ Number of comparative studies done at ISI, LBL, and
LANL using Network Simulator (NS) with Reno and
Vegas
—http://www.isi.edu/nsnam/ns/

—http://public.lanl.gov/radiant/website/pubs.html

—http://www.csm.ornl.gov/~dunigan/net100/netlinks.html

¥ Vegas may provide better throughput performance
due to lower loss rates as compared to Reno



Delayed ACKs

¥ TCP receivers send ACKs
—After every second MSS received

—After a delayed ACK timeout

—On every segment after a loss (missing segment)

¥ New segment sets the ACK timer (0-200msec)

¥ Second segment (or timeout) triggers an ACK and
zeros the delayed ACK timer



Detecting Loss

¥ Packets are discarded when queues become full or
nearly full depending on congestion control algorithm
used

¥ Duplicate ACKs get sent after missing or out of order
packets received

¥ Most TCP s retransmit after third duplicate ACK



Selective Acknowledgement (SACK)

¥ Specifies to sender exactly which Bytes were missing

¥ Better measures the right ed ge  of cwnd

¥ Very good at keeping queues full (more efficient use
of available bandwidth)

¥ However, will increase latencies

¥ Most OS s come with SACK including Linux and
windoze
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3) Back to slow start
(Fast Recovery couldn t repai r the lost
The packet lost is detected by timeout => go back to slow
start  cwnd = 2 MSS)

2) Fast Recovery
 (Temporary state to repair the lost)

1) A packet lost

New
loss

Losses occur
when the cwnd is
larger than 3,5
Mbyte

Cwnd too large for Available Bandwidth



Web100

NSF Project — NCSA, PSC, NCAR
W

www.web100.org



Motivations:  What s the Problem?

¥ High performance flows slower than line rate
—Delays continue/increase even with higher bandwidth

¥ TCP tuning issues are non-trivial

¥ Poorly conceived stacks

¥ Router/switch buffer queues inadequate

¥ Slow start and AIMD algorithm

¥ Eliminate/dramatically reduce the wizard g ap

¥ Need for kernel instrumentation set for TCP variables



The Wizard Gap

TCP over a long haul path

Year Wizards Non-wizards Ratio

¥              1Mb/s     300kb/s   3:1

¥             10Mb/s

1995         100Mb/s

¥     1Gb/s      3Mb/s         300:1

Scientists/researchers not happy with this





TCP tuning is painful debugging

¥ All problems limit performance
— IP routing, long round trip times

— Improper MSS negotiations or path MTU discovery

— IP Packet reordering

— Packet losses, congestion, lame hardware

— TCP sender or receive buffer space

— Inefficient applications

¥ Any one problem can mask all the others and confound all but
the best (and few) tuning gurus

¥ Need for better diagnostics and visibility into problems



Goal and Method

¥ Make it easy  (transparent) fo r non-experts to
achieve higher throughput performance

¥ Enhance TCP capabilities with better (finer grain)
kernel instrumentation and automatic controls

¥ Real time triage capability determines sender,
receiver, and/or network bottlenecks



Why Focus on TCP

¥ TCP has an ideal vantage point into throughput
problem space

¥ TCP can identify bottleneck subsystem(s)

¥ TCP already measures the network (some)

¥ TCP can measure the application

¥ TCP can adjust itself (auto-tuning feedback)



Status

¥ Over a year of ~ 30 alpha testers from SLAC, ORNL,
LBNL, and universities
—www.net100.org

¥ Modified Linux kernel supports 2.4.16

¥ Separation between KIS and library functions

¥ draft-ietf-tsvwg-tcp-mib-extension-00.txt

¥ draft-ietf-ipngwg-rfc2012-update-01.txt



Looking Ahead

¥ New pathprobe diagnostic tool (wip, unreleased)

¥ Add another 10-12 instruments

¥ Include ideas from Wu Feng s Dynamic Right Sizing

¥ Review instruments and code with other wizards

¥ Gain vendor support for ideas and code

¥ Finalize IETF draft by fall meeting



Summary

¥ Freely available software distribution
—www.web100.org/download

—hundreds of downloads

¥ Please be cognizant of impacts on others

¥ Please use, test, provide feedback, contribute code

¥ IETF standards process to benefit all

¥ Attention turning to working with OS vendors to
incorporate standards enhancements into their stacks



NET100
Development of network-aware operating

systems

www.net100.org

DOE Funded Project — PSC, ORNL, LBL, NCAR



Net100 project

¥ DOE-funded (Office of Science) project ($1M/yr, 3 yrs)
¥ Principal investigators

— Wendy Huntoon and the PSC/Web100 team (Janet Brown, Matt Mathis)
— Brian Tierney, LBNL
— Tom Dunigan, ORNL
— collaborators: Marla Meehl, Peter O Ne il, Bill Wing, Nageswara Rao

¥ Objective: develop network aware operating systems
—  optimize and understand end-to-end network and application performance
—  eliminate the w izard gap
—  Web100 to Web1000?

¥ Motivation
— DOE has a large investment in high speed networks (ESnet) and

distributed applications



Net100 approach

¥ Deploy/enhance Web100 into DOE network applications
— auto-tune network applications to optimize performance

— collect performance statistics to understand/tune networks and
applications

— evaluate network applications over DOE s ESnet (OC12, OC48?)
¥ bulk transfers over high bandwidth/delay network

¥ distributed applications (grid)

¥ Develop  Network Tools Analysis Framework (NTAF)
— configure/launch network tools (pathrate, pipechar, )

— aggregate and transform output from tools and Web100

¥ Develop Network Analysis Information Base (NAIB)
— repository for NTAF data

— API to collect and query



Bulk transfers

¥ ORNL/NERSC Probe project
—wide-area distributed storage testbed (HPSS)

—investigate protocols, software, devices

¥ climate model data transfers were slow
— OC3 with 60 ms RTT

—classic TCP tuning problem

— also broken TCP stacks

— developed (almost) TCP-over-UDP test harness
¥ instrumented and tunable

¥ Recent upgrade to OC12, 100 ms RTT



TCP losses

Packet losses during startup, linear recovery 0.5 Mbs 

instantaneous

average

Packet  loss

Early packet 

drops



Early Impact of Net100
¥ Avoid losses

— retain/probe for optimal  buffer
sizes

— autotuning (Web100/Net100)

— ECN capable routers/hosts

— reduce bursts

¥ Faster recovery
— shorter RTT ( fix  routes)

— bigger MSS (jumbo frames)

— speculative recovery

— modified congestion avoidance?

¥ SCTP, out-of-order delivery



Bulk transfer speedups

¥ Parallel streams (psockets)
—how to choose number of streams,

buffer sizes?

—Web100 autotune ?

¥ Application routing daemons
—indirect TCP

—multipath (Rao, ORNL)

¥ Are these fair?



Network Tool Analysis Framework
(NTAF)

¥ Configure and launch network tools
— measure bandwidth/latency (iperf, pchar, pipechar)

— collect passive data (SNMP from routers, OS counters)

— forecast bandwidth/latency for grid resource scheduling

— augment tools to report Web100 data

¥ Collect and transform tool results into a common format

¥ Save results for short-term auto-tuning and archive (NAIB) for
later analysis
— compare predicted to actual performance

— measure effectiveness of tools and auto-tuning

¥ Use NetLogger to format and send data to NAIB



NetLogger

¥ End-to-end performance monitoring tool

¥ Modify application to log interesting events

¥ Support for distributed applications (NTP timestamps)

¥ Identify application/network bottlenecks

¥ Components
—IETF draft standard message format

—API for event logging

—tools for collecting/sorting log files

—visualization tool for monitoring/playback



NetLogger



Network Analysis Information Base
(NAIB)

¥ Extensible infrastructure for performance data

¥ Collect data from active and passive Net100 probes
via NetLogger

¥ Gather and serve data via programmatic and graphical
interfaces



Network Tool Analysis Framework
(NTAF)

DB

Configured to perform tests from each
host to all other hosts

ping, traceroute, iperf, pipechar, etc.
can query any NTAF service for recent
results FROM that server
all results sent to archive

LBNL test host

Network

Monitoring
Event Archive

NERSC test host
ORNL test host

PSC test hostNCAR test host

NTAF
Service

NTAF
Service

NTAF
Service

NTAF
Service

NTAF
Service



NTAF Use Case

¥ The NTAF is configured to run the following network tests
every few hours over a period of several days:

— ping -- measure network delay

— pipechar -- actively measure speed of the bottleneck link

— iperf -- actively measure TCP throughput. Multiple iperf  tests could be run with
different parameters for the number of parallel streams {e.g.: 1,2,4} and the
method of tuning the TCP buffers {Web100 auto-tuned, hand-tuned}

¥ All tools will use the Web100 TCP-KIS interface to collect
TCP information from the Web100 kernel, and then use
NetLogger to format and send this data to the database.



Use Case (cont.)

¥ Analysis based on this test configuration includes:

— The ability to compare Web100 tuned throughput to hand-tuned throughput.

— The ability to compare predicted bandwidth with application and iperf
bandwidth.

— The ability to determine the advantage, if any, of parallel data streams, using
both hand-tuned and autotuned (Web100-tuned) TCP.

— The ability to see the variability of the results over time.

— The ability to compare pipechar and pathrate to see which is most accurate.

— The ability to measure the impact of tuned TCP streams on non-tuned streams.



GridFTP

• Working with the Globus project to add NetLogger
instrumentation to GlobusIO and GridFTP,
– provides detailed analysis of how modifying TCP parameters effects GridFTP application

performance.
– Will begin testing the use of the WAD to improve GridFTP performance. 

¥ GridFTP (a real application)
— Deployment

— Full install or NTAF install?
¥ will require work for sysadmins

¥ PROBE?



Net100: applied Web100
¥ Web100

— Linux 2.4 kernel mods

— 100+ TCP variables per flow

¥ Net100
— Add Web100 to iperf/ttcp

— Monitoring/tuning daemon

¥ Java applet bandwidth/client tester
— fake WWW server provides html

and applet

— applet connects to bwserver
¥ 3 sockets (control, bwin, bwout)

¥ server reports Web100 variables to
applet (window sizes, losses, RTT)

— Try it
http://firebird.ccs.ornl.gov:7123



Net100 concept (year 1)

¥ Path characterization (NTAF)
— both active and passive measurement
— data base of measurement data

¥ Application tuning  (tuning daemon,
WAD)
— Work around network problems
— daemon tunes application at start up

¥ static tuning information
¥ query data base and calculate optimum TCP

parameters
— dynamically tune application (Web100 feedback)

¥ recalculate parameters during flow
¥ split optimum among parallel flows

¥ Transport protocol optimizations
— what to tune?
— is it fair?  stable?



Net100: tuning
¥ Work-around Daemon (WAD) Version 0

— tune unknowing sender/receiver at startup

— config file with static tuning data

¥ {src, srcport, dst, dstport, window}

— LBL has python version

¥ expression-based tuning

¥ To be done
— applying  m easurement info

— tune more than window size?

— communicating WADs

— dynamic tuning



  Example WAD Usage

¥ Manipulate Web100 variables based on info from
other Web100 instrument variables

¥ Ability to generate and log derived events:
derived_event: BW=(DataBytesOut*8)/(SndLimTimeRwin+

SndLimTimeCwnd+SndLimTimeSender)

—uses NetLogger to send events to archive or for real-
time analysis

¥ Ability to tune parallel streams (make them fairer?)
—buffer size per stream = optimal buffer size for 1

stream / number of parallel streams

¥ WAD-to-WAD control channel
—Receiver WAD sends tuning data to transmitter WAD



TCP Issues
¥TCP robust over 20 years

—reliable/stable/fair
—need window = bandwidth*delay

¥ ORNL/NERSC (80 ms, OC12) need 6 MB

¥Changing: bandwidths
—9.6 Kbs  1.5 Mbs ..45 10 0 1000 ?

Mbs

¥Unchanging:
—speed of light (RTT)
—MTU (still 1500 bytes)
—TCP congestion avoidance

¥TCP is lossy by design !
—2x overshoot at startup, sawtooth
—recovery after a loss can be very slow

on today s high delay/bandwidth links
—Recovery proportional to MSS/RTT2

Linear recovery at 0.5 Mb/s!

Instantaneous bandwidth

Average bandwidth

Early startup 
losses



Net100 tuning
¥Avoid losses

—use optimal  buffer sizes determined from
network measurements

—ECN capable routers/hosts
—TCP Vegas
—reduce bursts

¥Faster recovery
—bigger MSS (jumbo frames)
—speculative recovery (D-SACK)
—modified congestion avoidance (AIMD)
—TCP Westwood (sender-side mods of the

window congestion control scheme)

¥Autotune (WAD variables)
—Buffer sizes
—Dupthresh (reordering resilience)
—Del ACK, Nagle
—aggressive AIMD
—Virtual MSS
—initial window, ssthresh
—apply only to designated flows/paths (tests with TCP-over-UDP, atou, NERSC to ORNL)



Net100 status
¥Completed

—network probes at ORNL, PSC, NCAR, LBL, NERSC
—preliminary schema for network data
—initial Web100 sensor daemon and tuning daemons
—integration of DRS and Web100 (proof of principle)

¥In progress
—TCP tuning extensions to Linux/Web100 kernel
—analysis of TCP tuning options
—deriving tuning info from network measurements
—tuning parallel flows and gridFTP

¥Future
—interactions with other network measurement sources
—multipath/parallel path selection/tuning



Net100 and ESnet

¥ GigE jumboframe experiments

¥ ECN experiments
—Supported by Linux

—Instrumented by Web100

¥ drop-tail vs RED experiments

¥ SNMP path data
—where are losses occurring?

—what kind of losses?

—SNMP mirrors (MRTG)



Web100/Net100 outreach

¥ Web pages describing current results

¥ Downloadable Web100/Net100 software

¥ NAIB data available

¥ Tutorials, talks, and papers
—SC2002 paper prep

¥ Interact with DOE grid projects and Data Grid
projects



For more Information

¥ http://web100.org/

¥ http://www.net100.org/

¥ http://www-didc.lbl.gov/net100/
¥ http://www.csm.ornl.gov/~dunigan/net100

¥ http://www.csm.ornl.gov/~dunigan/net100/netlinks.html


