
CORBA, JavaIDL,
NEO, Joe and more...

Daniel J. Berg
Chief Technology Officer

U.S. Reseller Channel
daniel.berg@Sun.COM

Agenda...

z CORBA Overview
– Architecture
– IDL

z Solaris NEO
– CORBA Implementation
– Features

z Joe

z JavaIDL

CORBA Overview

Heterogeneous Distributed Computing

● Diversity in HW and SW
● Need for Interoperability, from

pagers to supercomputers
● Software is the problem today

● Development time and cost
● Software Systems Integration

● Component Software is the Solution
● interoperability and reuse

Networked Objects: The Benefits

y Easier to build enterprise applications

y Better way to deploy enterprise applications

y Easier to modify enterprise applications

y Easier to administer networked systems

OMG’s Object Management Architecture

Lifecycle Naming Persistence Etc.

CORBAservices

FinancialHealthcare

User
Interface

Info
Mgmt

Systems
Mgmt

Task
Mgmt

Telco

Object Request Brokers

CORBAfacilitiesApplication
Objects

A
pplications

O
bjects

z CORBA objects can be located
anywhere on a network

z CORBA objects can run on any
platform

z CORBA objects can be written in any of
several languages

z Location, Platform and Language are
invisable

The ORB

z Responsible for the following
mechanisms:
– Finding object implementation
– Preparing the remote object to receive a

request
– Communicating data making up the

request

z All of this is independent of where the
object is locatated

ORB Struture

IDL
Stub

ORB
Interface IDL

Skel

ORB Core

Client Object Impl

Implementation
Support

 Invocation

client program

call

language
mapping

operation
signatures

Location Service
ORB

ORB Operations Basic Object Adapter

Multithreading

Stub Skeleton

language
mapping entry
points

method

object
implementation

Transport Layer

CORBA Benefits

• SW development tools don’t change
• “best practice” for Software lifecycle

– OO analysis and design

– OO language implementation
• Languages, DataBases, User Interfaces

– Distributed Object Environment for Deployment

• Legacy apps on equal basis via IDL and wrapper code
• Maximize Programmer Productivity

– off-the-shelf tools

– standardized CORBAservices, CORBAfacilities
– platform independence

• Code reuse
– components, as-is, in new or dynamically reconfigured apps
– new services via stepwise refinement

• Mix and match tools in a project
– Java, C/C++, Objective-C

Object Technologies http Server

Java Client
THIN

Legacy DB
CORBA

Object Servers

NEO

Inter / Intra
net

NEO Client
OpenStep
Windows

FAT

Object Servers

CORBA

Interoperability Vs. Portability

ORB A ORB AORB B ORB B

APP APP Client
Sever
Object

=

Portability Interoperability

Interface Definition Language

z IDL - Describes only the interface

z Language independent description

z IDL is mapped to into languages

z IDL mappings Sun has today
– C, C++, Java

module Bank {
 interface Teller {
 float getBalance();
 void deposit(in float amt);
 void withdraw(in float amt);
 };
 };

Client / Object Development Process

IDL
Definition

IDL
Compiler

Client
 Program
Source

Header
Files

C++
Compiler

IDL
Compiler

Stub Source Skeleton Source
Header
Files

C++
Compiler

Object
Implementation

Source

Object Implementation
Binary

Client Program
Binary

Client
Developer

Object
Developer

Solaris NEO

NEO: The Complete Environment

NEO
Product
Famil y

Database And
Legacy Code

Integration

The Object
Network

Application
Environment

Developer
Environment

Cross-Platform
Integration

Networked
Object

Administration

Things to think about

● Installation support
● Centralized server management
● Finding common services
● Debugging: tracing/logging
● Exception handling
● Safe simultaneous requests
● “Servant” code
● State persistence
● Object life-cycle, activation, deactivation
● Server startup and shutdown

NEO Server

z Builds on and simplifies NEO Network ORB
server process activation

z Provides transparent management of the
availability of object implementations grouped
in a server program

– Automates server process startup on arrival of request
for any object in server program

– Automates server process shutdown after period
of inactivity

z With Persistent Object Availability, minimizes
use of system resources

NEOshare - Basic Shared Services

• Workgroup Support and Shared Service Finder
publish/subscribe by Workgroup

• Concurrency Requests
creation and management of threads and deadlock avoidance

• Server and Persistent Object Availability
automatic start, re-start and management of object context

• Server Management
balance computer loads, collect logging and tracing information, track errors

• Application Installation
software installation, registration and upgrade

• Data Store Manager
support for fine-grained objects, type safety, and caching of attribute values

• Implementation
servant creation and management. smart object references, exception

handling, object tracing, and message logging

NEO Development Environment

z Interface Builder

z Project Builder

z Icon Builder

z Header Viewer

z IDL Compiler

z NEOshare Dev Framework

z Network Object Debugger

z Networked Object Constructor

z SPARCcompiler C/C++

z SPARCworks Teamware

z SPARCworks iMPACT

OpenStep NEO Visual C++
WorkShop

Connectivity for MS-Windows

• Leverage Windows development tools
and desktops

• No knowledge of CORBA required
• Win95, WinNT 3.5.1, Win NT 4.0
• CORBA 2.0 compliant

Features

z GUI Tool for browsing and installing NEO shared
services

z Real-time object conversion between OLE/COM and
CORBA

z Bi-directional interoperability among OLE, COM and
NEO

z No changes to client software required

z Supports OLE Automation, ActiveX and COM
interfaces

z Small Footprint -> less than 2 MB

z Standards
– OMG IIOP for network communications
– OMG COM/CORBA interoperability

Server Development Process

OSL
Definition

IDL
Definition

DDL
Definition

OSL
Compiler

IDL
Compiler

DDL
Compiler

Generated
Starting Code

Server Program
Source

Server Program
Class Definitions

Generated
Source

Generated
Source

Skeleton
Source

Header
File

Header
File

Header
File

Linked with NEO Services and NEO Network shared libraries

C++
Compiler

C++
Compiler

C++
Compiler

Shared
Library

Shared
Library

Shared
Library

Shared
Library

C++
Compiler

Per object type

NEO Naming Service

C

A

client

resolve A:B:C

root
NamingContext

resolve B:C

resolve C

NamingContext

object
reference
of A:B:C

B

NEO Naming Service

z Standardized way of storing and retrieving
object references by name

z Provides a hierarchical naming scheme for
objects and naming contexts

z Uses canonical representation for compound
names (i.e. does not mandate any particular
syntax)

NEO Event Service

event
consumer

PullSupplier

Event Channel

PushSupplierPushConsumer

push

event
consumer

PullConsumer

pull

pull

event
supplierPullConsumer

NEO Event Service

z Supports asynchronous event notification
between event producers and consumers

z Event channels decouple suppliers and
consumers and support multiple suppliers and
multiple consumers

z Supports push-style and pull-style delivery
models and event “fan-in” and “fan-out”
(multicast)

z Two implementations provided with different
qualities-of-service: (1) fully persistent (2)
transient events, persistent connections

NEO Property Service

client

get_property P
P V

associated
object

PropertySet

NEO Property Service

z Simple, extensible service

z Enables properties to be dynamically
associated with any object independent of its
static IDL interface attributes

z Does not require the involvement of the
associated object

z PropertySet is first-class networked object that
maintains a set of key-value pairs

NEO Relationship Service

ReferencedByRole

ReferencesRole

ContainsRole

ContainedInRole

related
object

related
object

related
object

Relationship *

Relationship +
related
object

many-to-many*
one-to-many+

Relationship +

NEO Relationship Service

z Provides standardized way of linking networked
objects in a way that does not require involvement
of objects

z Supports one-to-one, one-to-many and many-to-
many binary relationships

z Relationships are first class objects themselves

z Two common kinds of relationships are
predefined: containment and reference

z Navigation of relationships comparable to use of
object references

NEO Lifecycle Service

copy

client

LifecycleObjecttarget
object

find_factories

FactoryFinder

factorynew object

create_object
factory
finder

NEO Lifecycle Service

z Conventions for creating, deleting, copying and
moving objects

z Client’s model of creation is defined in terms of
factory objects

z Compound life-cycle operations address copying,
moving and deleting objects that are related to
other objects

– Builds on Relationship Service traversals of graphs
of related objects

Joe

Joe

z CORBA 2.0

z IIOP

z CORBA compliant ORB

z Remote call-back
– asynchronous event notification
– eliminates polling

z Firewall support

z Requires NEO

z Older IDL mapping

JavaIDL

Java IDL 1.1

z 100% Pure Java ORB

z Full IIOP implementation

z CORBA 2.0 IDL to Java mapping

z CORBA 2.0 standard COS Naming

z Does not use a Interface Respository
– Has access to other IR info from other

CORBA implementations

JavaIDL or RMI?

z RMI
– Java to Java
– Private protocol
– Pass by value
– Distributed garbage collection

z JavaIDL
– Java client -> CORBA server
– CORBA client -> Java server
– IIOP protocol
– CORBA services

idltojava

z Compiles IDL to Java source

z idltojava -fclient -fserver test.idl

JavaIDL Example

z IDL code that defines a simple interface

module Bank {
 interface Teller {
 float getBalance();
 void deposit(in float amount);
 void withdraw(in float amount);
 };
 };

z Run idltojava -fserver -fclient bank.idl

JavaIDL Example - The Servant

z tellerServant is the implementation of the
Teller IDL interface

z The servant is a subclass of _TellerImplBase

z tellerServant contains one method for each
IDL operation

Servant Code...

class tellerServant extends _TellerImplBase {
 float balance = 0;

 public float getBalance() {
 return(balance); }

 public void deposit(float amount) {
 balance += amount; }

 public void withdraw(float amount) {
 balance -= amount; }
 }

JavaIDL Example - The Server

z Servers main() method

z Creates ORB instance

z Creates servant instance and tells ORB
about it

z Gets naming context and registers the
new object

z Waits for invocation of the new object

Server Code...

public class BankServer {
 public static void main(String args[]) {
 try {
 // create and initialize the ORB
 ORB orb = ORB.init(args, null);

 // create servant and register it with the ORB
 tellerServant bankRef = new tellerServant();
 orb.connect(bankRef);

 // get the root naming context
 org.omg.CORBA.Object objRef =
 orb.resolve_initial_references("NameService");

Server code (cont.)
 NamingContext ncRef =
 NamingContextHelper.narrow(objRef);

 // bind the Object Reference in Naming
 NameComponent nc = new
 NameComponent("TheBank", "");
 NameComponent path[] = {nc};
 ncRef.rebind(path, bankRef);

 // wait for invocations from clients
 java.lang.Object sync = new java.lang.Object();
 synchronized (sync) {
 sync.wait();
 }
 }

JavaIDL Example - The Client

z Client main()

z Get naming context

z Get a tellerRef

z Call methods on the object

Client Code...

public class Client {
 public static void main(String args[]) {
 try {
 // create and initialize the ORB
 ORB orb = ORB.init(args, null);

 // get the root naming context
 org.omg.CORBA.Object objRef =
 orb.resolve_initial_references("NameService");
 NamingContext ncRef =
 NamingContextHelper.narrow(objRef);

Client Code (cont.)

 // resolve the Object Reference in Naming
 NameComponent nc = new
 NameComponent("TheBank", "");
 NameComponent path[] = {nc};
 Teller tellerRef =
 TellerHelper.narrow(ncRef.resolve(path));

 // call the Bank server object and print results
 System.out.println("Balance: " +
 tellerRef.getBalance());
 tellerRef.deposit(345.89F);
 System.out.println("Balance: " +
 tellerRef.getBalance());
 }

Thank You!

