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CORBA Overview



Heterogeneous Distributed Computing

● Diversity in HW and SW
● Need for Interoperability, from

pagers to supercomputers
● Software is the problem today

● Development time and cost
● Software Systems Integration

● Component Software is the Solution
● interoperability and reuse



Networked Objects: The Benefits

y Easier to build enterprise applications

y Better way to deploy enterprise applications

y Easier to modify enterprise applications

y Easier to administer networked systems
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z CORBA objects can be located
anywhere on a network

z CORBA objects can run on any
platform

z CORBA objects can be written in any of
several languages

z Location, Platform and Language are
invisable



The ORB

z Responsible for the following
mechanisms:
– Finding object implementation
– Preparing the remote object to receive a

request
– Communicating data making up the

request

z All of this is independent of where the
object is locatated
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CORBA Benefits

• SW development tools don’t change
• “best practice” for Software lifecycle

– OO analysis and design

– OO language implementation
• Languages, DataBases, User Interfaces

– Distributed Object Environment for Deployment

• Legacy apps on equal basis via IDL and wrapper code
• Maximize Programmer Productivity

– off-the-shelf tools

– standardized CORBAservices, CORBAfacilities
– platform independence

• Code reuse
– components, as-is, in new or dynamically reconfigured apps
– new services via stepwise refinement

• Mix and match tools in a project
– Java, C/C++, Objective-C
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Interface Definition Language

z IDL - Describes only the interface

z Language independent description

z IDL is mapped to into languages

z IDL mappings Sun has today
– C, C++, Java

module Bank {
  interface Teller {
    float getBalance();
    void deposit(in float amt);
    void withdraw(in float amt);
    };
  };
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Solaris NEO



NEO:  The Complete Environment
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Things to think about

●  Installation support
● Centralized server management
● Finding common services
● Debugging: tracing/logging
● Exception handling
● Safe simultaneous requests
● “Servant” code
● State persistence
● Object life-cycle, activation, deactivation
● Server startup and shutdown 



NEO Server

z Builds on and simplifies NEO Network ORB
server process activation

z Provides transparent management of the
availability of object implementations grouped
in a server program

– Automates server process startup on arrival of request
for any object in server program

– Automates server process shutdown after period
of inactivity

z With Persistent Object Availability, minimizes
use of system resources



NEOshare - Basic Shared Services

• Workgroup Support and Shared Service Finder
publish/subscribe by Workgroup

• Concurrency Requests
creation and management of threads and deadlock avoidance

• Server and Persistent Object Availability
automatic start, re-start and management of object context

• Server Management
balance computer loads, collect logging and tracing information, track errors

• Application Installation
software installation, registration and upgrade

• Data Store Manager
support for fine-grained objects, type safety, and caching of attribute values

• Implementation
servant creation and management. smart object references, exception

handling, object tracing, and message logging



NEO Development Environment

z Interface Builder

z Project Builder

z Icon Builder

z Header Viewer

z IDL Compiler

z NEOshare Dev Framework

z Network Object Debugger

z Networked Object Constructor

z SPARCcompiler C/C++

z SPARCworks Teamware

z SPARCworks iMPACT

OpenStep NEO Visual C++
WorkShop



Connectivity for MS-Windows

• Leverage Windows development tools
and desktops

• No knowledge of CORBA required
• Win95, WinNT 3.5.1, Win NT 4.0
• CORBA 2.0 compliant



Features

z GUI Tool for browsing and installing NEO shared
services

z Real-time object conversion between OLE/COM and
CORBA

z Bi-directional interoperability among OLE, COM and
NEO

z No changes to client software required

z Supports OLE Automation, ActiveX and COM
interfaces

z Small Footprint -> less than 2 MB

z Standards
– OMG IIOP for network communications
– OMG COM/CORBA interoperability



Server Development Process
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NEO Naming Service
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NEO Naming Service

z Standardized way of storing and retrieving
object references by name

z Provides a hierarchical naming scheme for
objects and naming contexts

z Uses canonical representation for compound
names  (i.e. does not mandate any particular
syntax)



NEO Event Service
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NEO Event Service

z Supports asynchronous event notification
between event producers and consumers

z Event channels decouple suppliers and
consumers and support multiple suppliers and
multiple consumers

z Supports push-style and pull-style delivery
models and event “fan-in” and “fan-out”
(multicast)

z Two implementations provided with different
qualities-of-service: (1) fully persistent (2)
transient events, persistent connections



NEO Property Service
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NEO Property Service

z Simple, extensible service

z Enables properties to be dynamically
associated with any object independent of its
static IDL interface attributes

z Does not require the involvement of the
associated object

z PropertySet is first-class networked object that
maintains a set of key-value pairs



NEO Relationship Service
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NEO Relationship Service

z Provides standardized way of linking networked
objects in a way that does not require involvement
of objects

z Supports one-to-one, one-to-many and many-to-
many binary relationships

z Relationships are first class objects themselves

z Two common kinds of relationships are
predefined: containment and reference

z Navigation of relationships comparable to use of
object references



NEO Lifecycle Service
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NEO Lifecycle Service

z Conventions for creating, deleting, copying and
moving objects

z Client’s model of creation is defined in terms of
factory objects

z Compound life-cycle operations address copying,
moving and deleting objects that are related to
other objects

– Builds on Relationship Service traversals of graphs
of related objects



Joe



Joe

z CORBA 2.0

z IIOP

z CORBA compliant ORB

z Remote call-back
– asynchronous event notification
– eliminates polling

z Firewall support

z Requires NEO

z Older IDL mapping



JavaIDL



Java IDL 1.1

z 100% Pure Java ORB

z Full IIOP implementation

z CORBA 2.0 IDL to Java mapping

z CORBA 2.0 standard COS Naming

z Does not use a Interface Respository
– Has access to other IR info from other

CORBA implementations



JavaIDL or RMI?

z RMI
– Java to Java
– Private protocol
– Pass by value
– Distributed garbage collection

z JavaIDL
– Java client -> CORBA server
– CORBA client -> Java server
– IIOP protocol
– CORBA services



idltojava

z Compiles IDL to Java source

z idltojava -fclient -fserver test.idl



JavaIDL Example

z IDL code that defines a simple interface

module Bank {
  interface Teller {
    float getBalance();
    void deposit(in float amount);
    void withdraw(in float amount);
    };
  };

z Run idltojava -fserver -fclient bank.idl



JavaIDL Example - The Servant

z tellerServant is the implementation of the
Teller IDL interface

z The servant is a subclass of _TellerImplBase

z tellerServant contains one method for each
IDL operation



Servant Code...

class tellerServant extends _TellerImplBase {
  float balance = 0;
 
  public float getBalance() {
    return(balance);    }

  public void deposit(float amount) {
    balance += amount;    }

  public void withdraw(float amount) {
    balance -= amount;     }
  }



JavaIDL Example - The Server

z Servers main() method

z Creates ORB instance

z Creates servant instance and tells ORB
about it

z Gets naming context and registers the
new object

z Waits for invocation of the new object



Server Code...

public class BankServer {
  public static void main(String args[]) {
    try {
      // create and initialize the ORB
      ORB orb = ORB.init(args, null);

      // create servant and register it with the ORB
      tellerServant bankRef = new tellerServant();
      orb.connect(bankRef);

      // get the root naming context
      org.omg.CORBA.Object objRef =
        orb.resolve_initial_references("NameService");
      



Server code (cont.)
      NamingContext ncRef = 
        NamingContextHelper.narrow(objRef);

      // bind the Object Reference in Naming
      NameComponent nc = new 
        NameComponent("TheBank", "");
      NameComponent path[] = {nc};
      ncRef.rebind(path, bankRef);

      // wait for invocations from clients
      java.lang.Object sync = new java.lang.Object();
      synchronized (sync) {
        sync.wait();
        }
      } 



JavaIDL Example - The Client

z Client  main()

z Get naming context

z Get a tellerRef

z Call methods on the object



Client Code...

public class Client {
  public static void main(String args[]) {
    try {
      // create and initialize the ORB
      ORB orb = ORB.init(args, null);

      // get the root naming context
      org.omg.CORBA.Object objRef =
        orb.resolve_initial_references("NameService");
      NamingContext ncRef = 
        NamingContextHelper.narrow(objRef);



Client Code (cont.)

      // resolve the Object Reference in Naming
      NameComponent nc = new 
        NameComponent("TheBank", "");
      NameComponent path[] = {nc};
      Teller tellerRef = 
        TellerHelper.narrow(ncRef.resolve(path));

      // call the Bank server object and print results
      System.out.println("Balance: " + 
        tellerRef.getBalance());
      tellerRef.deposit(345.89F);
      System.out.println("Balance: " + 
        tellerRef.getBalance());
      } 





Thank You!




